Heat activation is intrinsic to the pore domain of TRPV1

نویسندگان

  • Feng Zhang
  • Andres Jara-Oseguera
  • Tsg-Hui Chang
  • Chanhyung Bae
  • Sonya M. Hanson
  • Kenton J. Swartz
چکیده

The TRPV1 channel is a sensitive detector of pain-producing stimuli, including noxious heat, acid, inflammatory mediators, and vanilloid compounds. Although binding sites for some activators have been identified, the location of the temperature sensor remains elusive. Using available structures of TRPV1 and voltage-activated potassium channels, we engineered chimeras wherein transmembrane regions of TRPV1 were transplanted into the Shaker Kv channel. Here we show that transplanting the pore domain of TRPV1 into Shaker gives rise to functional channels that can be activated by a TRPV1-selective tarantula toxin that binds to the outer pore of the channel. This pore-domain chimera is permeable to Na+, K+, and Ca2+ ions, and remarkably, is also robustly activated by noxious heat. Our results demonstrate that the pore of TRPV1 is a transportable domain that contains the structural elements sufficient for activation by noxious heat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with...

متن کامل

Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activat...

متن کامل

High temperature sensitivity is intrinsic to voltage-gated potassium channels

Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivi...

متن کامل

An external sodium ion binding site controls allosteric gating in TRPV1 channels.

TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 acti...

متن کامل

Uncoupling proton activation of vanilloid receptor TRPV1.

Multimodal gating is an essential feature of many TRP ion channels, enabling them to respond to complex cellular environments. TRPV1, a pain receptor involved in nociception at the peripheral nerve terminals, can be activated by a range of physical and chemical stimuli (e.g., capsaicin, proton, and heat) and further sensitized by proinflammatory substances. How a single receptor achieves this m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2018